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The example of homogeneous crystallization is used to examine stationary almost- 
harmonic oscillations due to instability in the formation and growth of new-phase 
elements in a matrix. 

In [i] it has been shown that nucleation in a metastable medium under stationary exter- 
nal conditions is often unstable: small perturbations in the nucleation rate under certain 
circumstances increase exponentially with time. The nonlinearities stabilize this, which 
leads to the establishment of a specific self-excited oscillation. The effect is evidently 
very important in crystallization from supersaturated solutions or supercooled liquids in a 
crystallizer in which the solid particles are continuously removed [2, 3]. The tendency for 
various instabilities to occur in such systems has been pointed out for example in [4, 5]. 

According to [i], the main reason for instability lies in the avalanche formation of 
critical nuclei when a certain supersaturation or supercooling is attained. The growing 
crystals eliminate this. If the nucleation rate varies sharply with these factors, the pro- 
duction of fresh nuclei is greatly retarded, and the supersaturation or supercooling may 
decrease to values lower than those corresponding to a constant nucleation rate under the 
given external conditions. As the crystals are removed, the concentration or the cooling 
will increase, which at first is virtually not compensated by fresh nucleation, and as a 
result the supersaturation or supercooling again attains the values corresponding to 
avalanche nucleation, after which the process repeats. This leads to periodic oscillations 
even under stationary conditions, as has been repeatedly observed [4-6]. 

Similar instabilities and oscillations in nucleation are characteristic of processes 
such as homogeneous or heterogeneous boiling, which has been discussed in [i]. Oscillatory 
phenomena in boiling have also been quite frequently observed [7]. However, there was a dif- 
ference from [i], where the main attention was given to large-amplitude oscillations such as 
are particularly characteristic of boiling (shock or explosive boiling), which may be 
described as discontinuous relaxation oscillations, in that in this paper studies were made 
on the weakly nonlinear almost harmonic oscillations arising with only slight supercritical- 

ity under conditions specific for homogeneous--crystallization systems. 

These oscillations are extremely important in a purely applied respect, not only in 
relation to eliminating the instability if this is undesirable but also in order to make 
effective use of it to improve parameters such as the overall yield of pure product, the 
mean crystal size, and so on, as well as to accelerate heat transfer. 

For definiteness, we consider crystallization from supersaturated solutions, although 
all the arguments and expressions can be transferred without particular difficulty to other 
situations such as supercooling in solutions or melts. The physical characteristics are 
taken as constant, while the bulk crystal concentration is taken as small, while we neglect 
the tendency of the nucleation rate to its stationary value because the characteristic relax- 
ation time is usually less by several orders of magnitude than the time scale of the oscilla- 
tion. 

We follow [i] in describing mass crystallization via a balance equation for the solute 
and a kinetic equation for the distribution f(t, r) of the crystals by radius r as normalized 
to the numerical concentration. We assume that the mass input to the system per unit volume 
and unit time is constant at Q, and the first of these equations is then written as 
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Fig. i. Neutral-stability characteris- 
tics: a) neutral-stability curves in the 
plane of the parameters (R, G = J'us/J) ; 
b) dependence of the minimal value of S 
in (i) for S(R) on b. 
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The a s s u m p t i o n  i s  made i n  d e r i v i n g  (1 )  t h a t  t h e  s y s t e m  i s  h o m o g e n e o u s ,  w h i c h  c o r r e s p o n d s  
to ideal mixing, which usually describes real situations well [2, 3]. In principle, Q can 
depend in any way on the supersaturation. 

The kinetic equation and the boundary condition for it are written as 

Ot Or uo f d t  r=r, C0 

H e r e  T i s  c o n s i d e r e d  a s  an  e f f e c t i v e  p a r a m e t e r  c h a r a c t e r i z i n g  t h e  r a t e  o f  c r y s t a l  
r e m o v a l ,  w h i l e  t h e  f o r m a t i o n  r a t e  f o r  c r i t i c a l  n u c l e i  o f  r a d i u s  r ,  i s  t a k e n  a s  d e p e n d e n t  o n l y  
on  t h e  r e l a t i v e  s u p e r s a t u r a t i o n  ( t h e  c o n c e n t r a t i o n  Co c o r r e s p o n d s  t o  t h e r m o d y n a m i c  e q u i l i -  
b r i u m ) .  The a s s u m p t i o n  t h a t  y i s  i n d e p e n d e n t  o f  r r e p r e s e n t s  an  i d e a l i z a t i o n ,  b u t  i t  i s  
usually employed in theoretical studies; as a whole, it reflects the situation quite well. 
Such studies also usually involve the assumption that the process is isothermal. It will be 
evident from the subsequent analysis that abandoning both of these simplifications does not 
lead to essential difficulties. 

The growth rate dr/dt is usually taken as a power-law dependence on the radius with 
exponent a < i, the value being determined by the detailed growth condition [ii, 12]. Limit- 
ing situations occur under kinetic conditions, where a = 0 (this simplest condition is consi- 
dered in [8-10]), and under diffusion-limited conditions, where the growth rate is limited 
by the rate of diffusion of the solute to the crystal and dr/dt = (D/0r)(c--co), i.e., a = 
--i [13]. In what follows, we put a = 1 -- b, b > 0, and introduce the variables 

c - -  co d r  ~cou 
0 = ? t ,  u =  -, = - - ,  (3) 

Co d t  r b - l  

w h e r e  t h e  k i n e t i c  c o e f f i c i e n t  $ c a n  h a v e  a n y  d e p e n d e n c e  on t h e  r e l a t i v e  s u p e r s a t u r a t i o n .  

Then s y s t e m  ( 1 ) ,  (2)  c a n  [1]  b e  t r a n s f o r m e d  t o  a s i n g l e  e v o l u t i o n a r y  i n t e g r o d i f f e r e n t i a l  
e q u a t i o n ,  w h i c h  i n  t h e  v a r i a b l e s  o f  (3)  t a k e s  t h e  fo rm 

= - -  " J I u ( O - - z ) l T - l + 3 / b e - T d z ,  (4)  
dO co buoco ~ . 

0 

w h e r e  Uo = <u>, i . e . ,  t h e  t i m e  a v e r a g e  o f  u ( t ) .  We h a v e  d e r i v e d  (4)  on t h e  a s s u m p t i o n  t h a t  
the time scale T satisfies yT >> i, while the mean radius of the spherical crystals is much 
greate r than r, [i]. 
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The stability of the stationary state with a constant crystal formation rate can be per- 

turbed in mild or severe fashions. The second case has been examined in [i] in the discon- 
tinuous-oscillation approximation for homogeneous boiling. In the first case, we consider 
slightly supercritical conditions in order to elucidate the perturbation evolution, i.e., the 
instability region near the neutral-stability curve. Then u(e) can be put as us(l + ~), 
where I~(8)] << i, while the constant u s represents the dimensionless supersaturation on the 

neutral-stability curve, which corresponds to the stationary state with crystallization at a 
constant nucleation rate. Note that Us = Uo in the stability region. On passage through the 
neutral curve, a second periodic state hranches from the stationary one. The value of u s on 

this curve satisfies the following stationary equation implied by (4): 

4~p ( b~cou~ | a/b (5) 

0 

The same relationship applies also for stationary conditions with constant nucleation 
rates within the stability region. In the instability region, in general, Uo = us(l + <~>), 

i.e., for <~> r 0 we have u s # Uo. We substitute u = us(l + ~) and Uo = us(l + <~>) into 
(4), use (3) and (5), and retain terms up to the third order in powers of the small quantity 

to get the following equation: 

.6 g~J~ (~) + g2J2 (~) -+- R (-- 1 ,-}- 3/b) < ~ > ~ + 

-{- g~(-- 1 + 3/b) < ~ > S~(~) +, g2~S,(~) 4- gaJn (~) = O. (6 )  

Here we have introduced the parameters 

k 
_ _  R J  (~) (Us)t4 j(k) _ dkJ (7)  

R -  Q , gh - k!J  (u~) ' du. h ' Us~Co 

J k ( ~ ) = F - l ( 3 / b ) . f  o - ~  e , k - - l ,  2, 3, 
0 

where F(x) is Euler's gamma function. 

It is necessary to include terms up to the third order of smallness in considering 

oscillations even for very small but finite amplitudes, as is implied by the general theory 

[14]; in deriving (6), we have used the fact that <~> is of the order of I~I 2 according to 
this theory. The approximation to (6) linear in ~ enables one to determine the bounds of 
the stability region for homogeneous crystallization with constant crystallization rate as 
in [I]. We substitute the linear equation ~ = ~o exp(v@) following from (6) to get the com- 
plex equation 

~ + R + g i ( 1  + v)-3/b = O. (8)  

With v = i~, where ~ is a real number, we get from (8) two real equations for the 

neutral-stability curve: 

Rtg(3~lb) = - - t g %  R = --gicosS/b~cos(3~/b), ~ = arctg~ .  (9 )  

S ys t em  (9)  has  t h e  r o o t  ~ = 0 ;  t h e  c o r r e s p o n d i n g  i n s t a b i l i t y  c o n d i t i o n  

J'  (u~) uJJ (u~)  < -- 1 (i0) 

can be satisfied on descending branches of J(u) as occurring when the Tamman effect is pres- 
ent. In that case, stability is lest in relation to zero-frequency perturbations, and it 
can be shown that this leads to a supersaturation explosion, which increases without limit 
under given external conditions. It is impossible for self-excited oscillations to occur 
under these conditions. 

If b < 3 (this is so virtually always), it follows from (9) that the system will be 
unstable even when 

u~ d i  I > S ( R )  = ( - -  cos-3/b~) cos -1 (3m/b). (11) 
6 J (u,) du ..... 
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Fig. 2. Dependence on R for the oscillation period on the 
neutral-stability curve. 

Fig. 3. Dependence of the square of the oscillation ampli- 
tude and the frequency shift on R and the supercriticality 
gl/g~ -- 1 in kinetic growth (b = i) and with power-law 
nucleation kinetics (J =cun). 

In this case, the stability is initially perturbed in relation to small perturbations with 
the dimensionless frequency ~?=[g~(R) , where the angle ~ varies from ~b/6 to min{~b/3, ~/2} 
as R increases from zero to infinity. Figure 1 shows the neutral-stability curves correspon- 
ding to (ii) together with S(1) = min S(R). In particular, if we use the power-law approxi- 
mation J(u) = Cu n, condition (ii) becomes n > S(R). As n takes a value in the range 1 to 8 
[15] usually in experiments on the rising branch of J(u), Fig. 1 shows that instability may 
occur over a wide range in R if b is not too large. Here we may note that an unsound con- 
clusion was drawn in [16, 17] that oscillations are impossible with the power-law dependence 
of the nucleation rate on the supersaturation. Figure 2 shows how the period T ~ = 2~/m ~ of 
the small perturbations involved in the stability loss on R, which agrees with the results 
of [9]. 

For b > 3, system (9) has only the single root 9=0 i.e., only the instability condi- 
tion (i0) is obeyed, not (ii). This corresponds physically to the crystal growth rate 
increasing so slowly with the size that the stability cannot be violated even if the steep- 
ness of the ascending branch of J(u) is very great. However, values b > 3 are somewhat exo- 
tic, and if they can occur in practice at all, they must require extremely special conditions. 

We assume that weakly linear almost harmonic oscillations occur with a small relative 
amplitude when (ii) is obeyed and there is slight penetration into the instability region. 
We put 

(0) - ~n e , ~n l)-m (1)i(D-i @)7 = q, (12) 

where the asterisk denotes the complex conjugate, while the origin for the dimensionless 
time 0 is taken such that ~ is real. Also, Go = <~> ~ q, I~nl ~ q n/2, where q is propor- 
tional to the supercriticality gl/g ~ -- i, in which gO = RS(R) is the value of gl on the 
neutral-stability curve [14]. This shows that we need to consider only terms up to order 
q3/2 inclusive in (6), while in (12) we consider only harmonics having Inl~2 . We substi- 
tute (12) into (6) and separate the terms containing different phase factors for n = 0, i, 
2 to get the equations 

[g~ I (3/b) ~1 (Do = 2 lg~ Re A ((o) ~ g2l q 

[2io~ + R + g~A (2o))] ~)2 = - -  [g~A (@ + g._A (2@] q, 

A (x) = (1 + ix) -3/~ 

ko + g~A ((o) t R --  (I 3/b) R~o ~ (3/b) g6DoA (~o) } 

(13) 
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Fig. 4. Comparison of theory with experiment: a) 
mean crystal radius r m (i0 -3 m) for sodium nitrate; 
points from experiment [19], solid line from (26); 
R = i, u s : I, q~/~ = 0.06, y = 4.5-10 ~4 sec -~ 

CoB = 5.10 -~ m/sec, b = i, J =Cun; b) crystal' 

yield M(8)/<M> for sodium thiosulfate; points from 
exBeriment [19], solid �88 f[om (26); R = i, 
q ~7= = 0.075, y = 3-10- sec- , b = i, J Cun. 

+ g~@0 + g~ [A (20) + A* (~)] ~s + 2g~A (~) (~o + ~ )  

6 292q -6 g~A (2~) q -Jr- 3g3A (~) q = 0. (14) 

Wi thou t  e x c e e d i n g  the  a c c u r a c y  of  the  t h e o r y ,  we can r e p l a c e  ~ and gl by t h e i r  v a l u e s  
o and g~ on the  n e u t r a l - s t a b i l i t y  curve  i n  terms of  o r d e r  q. Then (13) i m p l i e s  t h a t  

Oo = aoq, ~2 = %q, (15) 

where we have introduced the coefficients 

2 (R - -  g~) i 0 0 + R - -  gsA (2~ ~ 
~o = , ~2 = . (16) 

(3!b) R -}- g~ 2i 00 -6 R -a t- gOA (20 ~ 

We expand the first two terms in (14) as series in the small quantities ~ -- o ~ q and 
g~/g? -- 1 ~ q, and use (9) to get 

i o + g~A (0) + R = - -  (g~ - -  gO) (R + io~ -6 (~ - -  ~0)(/~ + i ls), (17) 
where 

l~ = 3(R - -  1)o~ + ~0"), Is = 1 + 3(R + ~~ + 0 s  (18) 

The complex equation (14) is equivalent to two real equations, which are used in deter- 
mining the unknowns q and the frequency shift m -- w ~ We substitute (17) and (15) into 
(14) and solve the linear system for q and m -- o to get 

g t  - -  gO RI~ - -  o~ (19) 
q = g~ mils - -  molt ' 

o - -  00 = gl - -  gO m~R - -  mio ~ 
gO mils - -  msti (20) 

Here we have introduced the parameters 

nq = (g~ - -  R) s0 + 2g2 - -  (2gz~0 + 3g~ R/g~ + Re {g0~s [A (2w 0) + A* (0~ + g~A (2~ ~ + 292~A (~~ 

ms = - -  o0 (3~0/b + 2g~ao/gO + 3gJgO) + I m  {g0~s [A (20 ~ + A* (0")] + gsA (2~ ~ + 2gsa~A (~0)}. 

E q u a t i o n s  (19) and (20) enab le  one to d e t e r m i n e  the  c h a r a c t e r  of  the  s t a b i l i t y  l o s s ,  
the conditions for the existence of weakly linear almost harmonic crystallization, and the 

change in the oscillation frequency with the supercriticality for any nucleation kinetics, 
which may take a fairly complicated form [18]. The case q > 0 corresponds to the normal 
bifurcation in the stationary state (mild instability excitation) and the formation of a 
secondary periodic crystallization mode, while q < 0 corresponds to hard excitation and 
oscillations with wide ranges in frequency and initial phase, whose amplitude changes step- 
wise from zero to a certain finite value on passing through the boundary into the instability 
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region. As the expression in the numerator in (19) is positive (as can be verified directly), 
the mildness condition is equivalent to 

mi~ > mJl,  (22)  

where the quantities 11, 12 and ml, m2 are defined in (18) and (21), respectively. Then (22) 
and the condition q << i, which is obeyed for sufficiently small g~/g~ -- i, are sufficient 
to produce oscillation in homogeneous crystallization, the value of the supercriticality 
thus indicating only slight penetration into the instability region. 

To obtain further information from (19), we need data on the nucleation kinetics. 
Experiment showed that J(u) should be based on J = Cun [i0] or a relationship implied by the 
thermodynamic theory [18] in accordance with the particular conditions of mass crystalliza- 
tion. The results below relate to situations in which the nucleation kinetics may be 
described by one of these equations. 

In the case J = Cu n, (7) gives 

gi = nR, g~ = S ( R ) [ S ( R ) - -  11R/2 + O ( g i / g ? - -  1), 
(23) 

g3 : S (R) [S (R) - -  1] IS (R) - -  2] R/6 + 0 (g6g~ - -  1), 

w h e r e  O ( g l / g ~  - -  1) i s  o f  t h e  o r d e r  o f  q .  We n e g l e c t  t e r m s  o f  t h e  o r d e r  o f  q i n  ( 2 3 ) ,  w h i c h  
d o e s  n o t  l e a d  t o  a c c u r a c y  l o s s  i n  t h e  a p p r o x i m a t i o n ,  and  s u b s t i t u t e  (23)  i n t o  ( 1 9 ) - ( 2 1 )  t o  
g e t  e q u a t i o n s  f o r  t h e  o s c i l l a t i o n  c h a r a c t e r i s t i c s ,  w i t h  a l l  t h e  p a r a m e t e r s  d e p e n d e n t  o n l y  on 
b and  R. T h e s e  e q u a t i o n s  a r e  c u m b e r s o m e  and  t h e r e f o r e  a r e  n o t  g i v e n .  

F i g u r e  3 shows n u m e r i c a l  r e s u l t s  f o r  b = 1.  The s t a b i l i t y  v i o l a t i o n  i s  o f  t h e  m i l d  
t y p e  t h r o u g h o u t  t h e  r a n g e  i n  R b e c a u s e  q > 0 .  The f r e q u e n c y  i n c r e a s e s  w i t h  t h e  s u p e r c r i t i -  
e a l i t y .  

The a s y m p t o t e s  R << 1 a n d  R >> 1 h a v e  b e e n  e x a m i n e d  f o r  d i f f u s i o n - l i m i t e d  g r o w t h  (b = 2 ) ,  
w h i c h  showed t h a t  i n  t h e s e  c a s e s  t h e  o s c i l l a t i o n s  a r e  m i l d .  

The n u c l e a t i o n  k i n e t i c s  i n  s u p e r s a t u r a t e d  s o l u t i o n s  may b e  d e s c r i b e d  by  t h e  f o l l o w i n g  
d e r i v e d  f r o m  t h e  t h e r m o d y n a m i c  t h e o r y :  

J : C exp [ - -  A/ln ~ (1 + a)]. (24)  

We u s e  (7 )  and  (24)  t o  c a l c u l a t e  g2 and  g3 ;  f o r  u s s m a l l  we h a v e  

gi : 2RA/u~, g~ = S (R) IS (R) - -  3] R/2 + 0 (g6g~ - -  1), (25)  

g~ - -  [S (R) 2 - -  9S(R)  + 12] S (R) R/6 + 0 (g~g~ - -  1). 

I f  u s i s  a r b i t r a r y ,  t h e  e x p r e s s i o n s  f o r  g2 and  g3 c o r r e s p o n d i n g  t o  (24)  a r e  f a i r l y  cum- 
b e r s o m e  and  a r e  n o t  g i v e n  h e r e .  A s t u d y  o f  t h e  a s y m p t o t e s  R << 1 and R >> 1 by  t h e  u s e  o f  
(25)  was p e r f o r m e d  f o r  t h e  k i n e t i c  and  d i f f u s i o n - l i m i t e d  s t a t e s ,  w h i c h  showed t h a t  q > 0 i n  
t h e s e  c a s e s  and  t h a t  n e a r - h a r m o n i c  o s c i l l a t i o n s  a r i s e  n e a r  t h e  n e u t r a l - s t a b i l i t y  c u r v e .  

S u p e r s a t u r a t i o n  o s c i l l a t i o n s  a l t e r  t h e  mean c r y s t a l  r a d i u s ,  t h e  y i e l d  o f  f i n i s h e d  c r y -  
s t a l s ,  and  so  on [5 ,  6 ,  17 ,  1 9 ] .  I n  p r i n c i p l e ,  t h e  t h e o r y  e n a b l e s  one  t o  d e s c r i b e  a l l  t h e s e  
e f f e c t s .  F o r  e x a m p l e ,  i n  t h e  k i n e t i c  s t a t e ,  t h e  d e p e n d e n c e  o f  t h e  mean r a d i u s  rm and  t h e  
c r y s t a l  y i e l d  M on t i m e  t a k e s  t h e  f o r m  

rm = rf (t, r) dr = 2 9 {R - -  2R@o -k (6R - -  2~ ~) q 
8~u~p~ c8 

0 

+ (2w~ -- 4R) ql/2 cos~0 _[_ 2 (1 -+- R) ~ql/~ sin ~O --}- 

-k [4R I m ~2  -k 4~ (1 + R) Re ~2 - -  4 (1 -[- R) ~q - -  8 ~  I m ~21 sin 2~0 

-k [6 (R - -  ~ )  q - -  4R Re ~2 + 4 (1 + R) ~ I m ~2 + 8 ~  Re ~ 1  cos 2~0}, 

M - -  ?pV fdr  - -  y~pV rm + [1 - -  ~o + 2q 2ql/2 cos mO 
~u~co dO ] 

O 

- -  2 (Re ~2 - -  q) cos 2~0 + 2 Im ~2 sin 2~0] + 0 (q3/2), 0 (qa/2) N qa/e. (26 )  
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Figure 4 compares the results from (26) with the experimental data of [19]. We see from 
(15) and (26) that for g2 > R the mean yield <M> should increase in proportion to gl/g~ -- 1 
and can attain several percent even for low supercriticality. This has been observed by 
experiment [16, 17]. 

The results show that the proposed theory gives an adequate description of mass crystal- 
lization in an ideal-mixing system with continuous solid-particle removal, and it can be used 
to examine the processes in such equipments. It is readily seen that this theory can be 
extended to more complicated situations without essential difficulty, such as when the exter- 
nal mass flux varies, the various effective parameters are dependent on the supersaturation, 
and so on. 

In conclusion, we return to the interpretation of [i] for the boiling model and note 
that G = J'us/J ~ 102-103 for boiling [20]. Figure 1 shows that in the kinetic state of 
bubble growth, this value of G corresponds to deep penetration into the instability region. 
The oscillation amplitude in that case is usually large, and the oscillations themselves are 
far from harmonic. It is therefore undesirable to use this theory of weakly nonlinear oscil- 
lations under the conditions of homogeneous boiling. 

NOTATION 

A, C, n, constants specifying nucleation kinetics; b, parameter introduced in (3); c, 
Co, concentration, saturation concentration; D, diffusion coefficient; f, function of crystal 
size distributions J, j(k), nucleation rate and its derivative of the k-th order; Jk, integ- 
ral defined in (7); ~I, 12, parameters introduced in (18); M, crystal yield; ml, m2, parame- 
ters introduced in (21); r, r,, rm, crystal radius, critical nucleus radius, and mean crystal 
radius, respectively; R, parameter introduced in (7); q, square of the amplitude of the fun- 
damental of the supersaturation perturbation; Q, mass flow; S, G, functions defined in (ii); 
t, time; u, dimensionless supersaturation; V, crystallizer volume; v, crystal volume; a, 
index in the equation for crystal growth rate; ~o, ~2, functions defined in (16); B, kinetic 
coefficient of crystal growth rate; y, mass-transfer coefficient; ~, dimensionless time; ~, 
parameter introduced in (8); ~, supersaturation perturbation; p, crystal density; ~, para- 
meter specified in (9); ~n, amplitude of the n-th harmonic of supersaturation perturbation; 
~, frequency; a superscript degree refers to quantities defined on the neutral stability 
curve; an asterisk indicates complex conjugation; angle brackets imply time averaging. 
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MEASUREMENT OF THE FLUID FLOW VELOCITY BY 

AN ACOUSTIC FREQUENCY--PHASE METHOD 

O. G. Martynenko, V. I. Krylovich, 
A. D. Solodukhin, and V. G. Fedorei 

UDC 532.5:534.6 

New frequency--phase acoustic methods are described as well as the principles for 
apparatus realization of the recording the flow parameters of a fluid (sea) medium 
possessing elevated sensitivity and low inertia. 

The most extensively used devices at the present time for the determination of the mass- 
transfer characteristics, for instance, the flow velocities of fluid (marine) media, are 
vane-type devices based on a mechanical method of measurement. The possibilities of these 
traditional apparatus with respect to sensitivity, accuracy, and time resolution are restric- 
ted and practically exhausted. Thus, for example, the accuracy of measuring the flow velo- 
city of one of the last serially manufactured devices of the type ATsIT [i] with a vane- 
type flow velocity sensor does not exceed 3-4 cm/sec. 

To obtain the background characteristics of a marine medium, to investigate its fine 
structure, and to study the energy exchange between the ocean and the atmosphere, the cir- 
culation of vortex flows, the wake of typhoons, etc., the accuracy and sensitivity of the 
flow velocity measurements must be raised substantially and the sensor inertia must be 
diminished. 

Most promising in these respects are acoustic methods. When they are used, the flow 
velocity is determined by the difference in the times of ultrasonic signal (pulse) passage 
with and against the flow in the liquid (gaseous) medium being investigated, or the phase 
shift of the received and emitted ultrasonic oscillations caused by the motion of the medium, 
or by the magnitude of the Doppler effect that occurs during reflection of the ultrasonic 
wave from the inhomogeneities of the moving medium [i, 2]. However, these methods do not 
afford the possibility of simultaneous measurement of the magnitude of the flow velocity 
and acceleration. 
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